Universality and weak amalgamations

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

Winter School in Abstract Analysis section Set Theory & Topology Hejnice, Jan 25 – Feb 1, 2020

12 N A 12

Joint work with Adam Krawczyk

A. Krawczyk, W. Kubiś, *Games on finitely generated structures*, arXiv:1701.05756

Notation

Definition

Let \mathscr{F} be a fixed class of finitely generated models of a fixed countable language \mathscr{L} ; we assume \mathscr{F} is closed under isomorphisms. Define

$$\sigma\mathscr{F} = \Big\{\bigcup_{n\in\omega} X_n \colon \{X_n\}_{n\in\omega} \text{ is a chain in } \mathscr{F}\Big\}.$$

A B F A B F

4 A N

Notation

Definition

Let \mathscr{F} be a fixed class of finitely generated models of a fixed countable language \mathscr{L} ; we assume \mathscr{F} is closed under isomorphisms. Define

$$\sigma\mathscr{F} = \Big\{\bigcup_{n\in\omega} X_n \colon \{X_n\}_{n\in\omega} \text{ is a chain in } \mathscr{F}\Big\}.$$

Definition

Define

$A \hookrightarrow B \iff A$ embeds into B.

Notation

Definition

Let \mathscr{F} be a fixed class of finitely generated models of a fixed countable language \mathscr{L} ; we assume \mathscr{F} is closed under isomorphisms. Define

$$\sigma\mathscr{F} = \Big\{\bigcup_{n\in\omega} X_n \colon \{X_n\}_{n\in\omega} \text{ is a chain in } \mathscr{F}\Big\}.$$

Definition

Define

$$A \hookrightarrow B \iff A$$
 embeds into B .

Definition

Define

$$\operatorname{cov}_{\sigma}(\mathscr{F}) = \operatorname{cf}(\sigma\mathscr{F}, \hookrightarrow).$$

W.Kubiś (http://www.math.cas.cz/kubis/)

3 > < 3 >

Known facts

Claim

 $\operatorname{cov}_{\sigma}(\mathscr{F}) \leqslant 2^{\aleph_0}.$

W.Kubiś (http://www.math.cas.cz/kubis/)

Universality vs. WAF

<ロ> <四> <四> <四> <四> <四</p>

Known facts

Claim

 $\operatorname{cov}_{\sigma}(\mathscr{F}) \leqslant 2^{\aleph_0}.$

Theorem (Fraïssé)

Assume \mathscr{F} is hereditary and has both the joint embedding property and the amalgamation property. Then

 $\operatorname{cov}_{\sigma}(\mathscr{F}) = \mathbf{1}.$

Known facts

Claim

 $\operatorname{cov}_{\sigma}(\mathscr{F}) \leqslant 2^{\aleph_0}.$

Theorem (Fraïssé)

Assume \mathscr{F} is hereditary and has both the joint embedding property and the amalgamation property. Then

$$\operatorname{cov}_{\sigma}(\mathscr{F}) = 1.$$

Example

Let *P* be a fixed nonempty set of prime numbers and let \mathscr{F} be the class of all finite fields of characteristic $p \in P$. Then

$$\operatorname{cov}_{\sigma}(\mathscr{F}) = |\mathcal{P}|.$$

Graphs

Example

Fix k > 1 and let \mathscr{G}_k be the class of all finite graphs of vertex degree $\leq k$.

-

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Graphs

Example

Fix k > 1 and let \mathscr{G}_k be the class of all finite graphs of vertex degree $\leq k$.

A graph is k-regular if the degree of every vertex is equal to k.

Claim

Every finite graph in \mathscr{G}_k embeds into a finite k-regular graph.

Graphs

Example

Fix k > 1 and let \mathscr{G}_k be the class of all finite graphs of vertex degree $\leq k$.

A graph is k-regular if the degree of every vertex is equal to k.

Claim

Every finite graph in \mathscr{G}_k embeds into a finite k-regular graph.

Theorem

$$\operatorname{cov}_{\sigma}(\mathscr{G}_2) = \aleph_0$$
 and $\operatorname{cov}_{\sigma}(\mathscr{G}_k) = 2^{\aleph_0}$ for every $k > 2$.

Amalgamations

Definition

We say that \mathscr{F} has amalgamations at Z if for every two embeddings $f: Z \to X, g: Z \to Y$ with $X, Y \in \mathscr{F}$ there exist $W \in \mathscr{F}$ and embeddings $f': X \to W, g': Y \to W$ satisfying

$$f'\circ f=g'\circ g.$$

Amalgamations

Definition

We say that \mathscr{F} has amalgamations at Z if for every two embeddings $f: Z \to X, g: Z \to Y$ with $X, Y \in \mathscr{F}$ there exist $W \in \mathscr{F}$ and embeddings $f': X \to W, g': Y \to W$ satisfying

$$f'\circ f=g'\circ g.$$

Definition

We say that \mathscr{F} has the amalgamation property (AP) if it has amalgamations at every $Z \in \mathscr{F}$.

Weakenings of amalgamation

W.Kubiś (http://www.math.cas.cz/kubis/)

Universality vs. WAP

31 January 2020 7/18

э

Weakenings of amalgamation

Definition

We say that \mathscr{F} has the cofinal amalgamation property (CAP) if for every $Z \in \mathscr{F}$ there is an embedding $e: Z \to Z'$ such that \mathscr{F} has amalgamations at Z'.

Weakenings of amalgamation

Definition

We say that \mathscr{F} has the cofinal amalgamation property (CAP) if for every $Z \in \mathscr{F}$ there is an embedding $e: Z \to Z'$ such that \mathscr{F} has amalgamations at Z'.

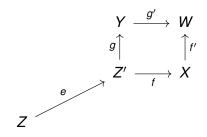
Definition (Ivanov, 1999)

We say that \mathscr{F} has the weak amalgamation property (WAP) if for every $Z \in \mathscr{F}$ there is an embedding $e: Z \to Z'$ with $Z' \in \mathscr{F}$, such that for every embeddings $f: Z' \to X, g: Z' \to Y$ there exist embeddings $f': X \to W, g': Y \to W$ satisfying

$$f' \circ f \circ e = g' \circ g \circ e.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

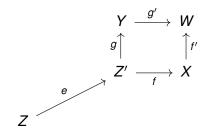
CAP and WAP



2

イロト イロト イヨト イヨト

CAP and WAP



Proposition

Finite graphs of vertex degree $\leq k$ have the CAP.

W.Kubiś (http://www.math.cas.cz/kubis/)

Universality vs. WAP

The first example of WAP and not CAP

Example (Pouzet, 1972)

Fix a linearly ordered set (X, <) and let *R* be the following ternary relation:

$$R(x, y, z) \Longleftrightarrow x < y, \ x < z, \ y \neq z.$$

Let \mathscr{F} be the class of all finite linearly ordered set treated as models of the language $\{R\}$. Then \mathscr{F} has the WAP but not CAP.

Reference:

W.Kubiś (http://www.math.cas.cz/kubis/)

Universality vs. WAP

31 January 2020 10/18

2

イロト イヨト イヨト イヨト

Reference:

 J.-F. PABION, *Relations préhomogènes*, C. R. Acad. Sci. Paris Sér. A-B 274 (1972) A529–A531.

A quote from Pabion's paper:

3º M. Pouzèt m'a communiqué l'exemple suivant de relation uniformément préhomogène et non pseudo-homogène. Sur Q, définir R (x, y, z)par x < y, x < z et $y \neq z$.

(*) Séance du 7 février 1972.

(1) J. P. CALAIS, Comples rendus, 265, série A, 1967, p. 2.

(2) R. FRAISSÉ, Cours de Logiques mathématiques, I, Gauthiers-Villars, Paris, 1967, deuxième édition 1971.

(3) G. KREISEL, The theory of models, North-Holland, 1970.

(*) P. LINSDTROM, Theoria, 30, 1964, p. 183-196.

(5) R. L. VAUGHT, Bull. Amer. Math. Soc., 69, p. 229-313.

Universilé Claude Bernard, Mathématiques, 43, boulevard du Onze-Novembre 1918, 69-Villeurbanne, Rhône.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathscr{F} be as above and assume that $\operatorname{cov}_{\sigma}(\mathscr{F}) < 2^{\aleph_0}$. Then \mathscr{F} has the weak amalgamation property.

Suppose \mathscr{F} fails the WAP.

W.Kubiś (http://www.math.cas.cz/kubis/)

Universality vs. WAP

31 January 2020 12/18

æ

イロト イロト イヨト イヨト

Suppose \mathscr{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathscr{F}$ such that A_s and $A_{s^{\cap}0}$, $A_{s^{\cap}1}$ witness the failure of WAP for each $s \in 2^{<\omega}$.

Suppose \mathscr{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathscr{F}$ such that A_s and $A_{s \cap 0}$, $A_{s \cap 1}$ witness the failure of WAP for each $s \in 2^{<\omega}$. Given $\sigma \in 2^{\omega}$, define

$$A_{\sigma} = \bigcup_{n \in \omega} A_{\sigma} \upharpoonright n.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose \mathscr{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathscr{F}$ such that A_s and $A_{s \cap 0}$, $A_{s \cap 1}$ witness the failure of WAP for each $s \in 2^{<\omega}$. Given $\sigma \in 2^{\omega}$, define

$$A_{\sigma} = \bigcup_{n \in \omega} A_{\sigma} \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_{σ} and A_{τ} are contained in a fixed $M \in \sigma \mathscr{F}$.

4 A 1

Suppose \mathscr{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathscr{F}$ such that A_s and $A_{s \cap 0}$, $A_{s \cap 1}$ witness the failure of WAP for each $s \in 2^{<\omega}$. Given $\sigma \in 2^{\omega}$, define

$$A_{\sigma} = \bigcup_{n \in \omega} A_{\sigma} \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_{σ} and A_{τ} are contained in a fixed $M \in \sigma \mathscr{F}$. Let $s = \sigma \cap \tau$. Then $A_{s \cap 0}$, $A_{s \cap 1}$ can be amalgamated inside M.

(B)

Suppose \mathscr{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathscr{F}$ such that A_s and $A_{s \cap 0}$, $A_{s \cap 1}$ witness the failure of WAP for each $s \in 2^{<\omega}$. Given $\sigma \in 2^{\omega}$, define

$$A_{\sigma} = \bigcup_{n \in \omega} A_{\sigma} \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_{σ} and A_{τ} are contained in a fixed $M \in \sigma \mathscr{F}$. Let $s = \sigma \cap \tau$. Then $A_{s \cap 0}$, $A_{s \cap 1}$ can be amalgamated inside M. A contradiction.

(B)

The Banach-Mazur game

Definition (BM $(\mathcal{F}, \mathfrak{M})$)

Let \mathscr{F} be as above, $\mathfrak{M} \subseteq \sigma \mathscr{F}$. Two players, Eve and Adam, alternately choose bigger and bigger models from \mathscr{F} , building a chain

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$$

Of course, Eve starts the game.

4 11 14 14 14 14

The Banach-Mazur game

Definition (BM $(\mathcal{F}, \mathfrak{M})$)

Let \mathscr{F} be as above, $\mathfrak{M} \subseteq \sigma \mathscr{F}$. Two players, Eve and Adam, alternately choose bigger and bigger models from \mathscr{F} , building a chain

$$A_0\subseteq A_1\subseteq A_2\subseteq \cdots$$

Of course, Eve starts the game. Adam wins if $\bigcup_{n \in \omega} A_n$ embeds into some $M \in \mathfrak{M}$. Otherwise Eve wins.

(B)

Let \mathscr{F} be as above and assume Adam has a winning strategy in BM ($\mathscr{F}, \mathfrak{M}$), where $|\mathfrak{M}| < 2^{\aleph_0}$. Then \mathscr{F} has the weak amalgamation property.

Let \mathscr{F} be as above and assume Adam has a winning strategy in BM ($\mathscr{F}, \mathfrak{M}$), where $|\mathfrak{M}| < 2^{\aleph_0}$. Then \mathscr{F} has the weak amalgamation property.

Corollary

Assume \mathscr{F} has the joint embedding property and countably many isomorphic types. The following conditions are equivalent:

- (a) There is M ⊆ σF with |M| < 2^{ℵ₀} such that Adam has a winning strategy in BM (F, M).
- (b) *F* has the weak amalgamation property.

(c) There is U ∈ σℱ such that Adam has a winning strategy in BM (ℱ, {U}).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume \mathscr{F} fails the weak amalgamation property. Then Eve has a winning strategy in BM (\mathscr{F} , {V}) for every $V \in \sigma \mathscr{F}$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Assume \mathscr{F} fails the weak amalgamation property. Then Eve has a winning strategy in BM (\mathscr{F} , {V}) for every $V \in \sigma \mathscr{F}$.

Problem

Find a class ${\mathscr F}$ of finite models of a fixed finite language such that consistently

 $\aleph_0 < \operatorname{cov}_{\sigma}(\mathscr{F}) < 2^{\aleph_0}.$

Further examples

W.Kubiś (http://www.math.cas.cz/kubis/)

2

イロト イヨト イヨト イヨト

Further examples

Example

Fix a nontrivial subgroup *S* of $(\mathbb{R}, +)$. Let \mathfrak{M}_S be the class of all finite metric spaces with distances in *S*.

★ ∃ > < ∃ >

Image: A matrix and a matrix

Further examples

Example

Fix a nontrivial subgroup *S* of $(\mathbb{R}, +)$. Let \mathfrak{M}_S be the class of all finite metric spaces with distances in *S*.

Theorem

If S is countable then $cov_{\sigma}(\mathfrak{M}_{S}) = 1$, otherwise

$$\mathsf{cov}_\sigma(\mathfrak{M}_\mathcal{S}) = \mathsf{cf}\left([\kappa]^{leph_0},\subseteq
ight)$$

where $\kappa = |S|$.

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Example

Let \mathscr{F} be the class of all finite graphs in which different cycles of equal length do not have a common edge. Then \mathscr{F} fails the weak amalgamation property.

A b

A. Krawczyk, W. Kubiś, *Games on finitely generated structures*, arXiv:1701.05756

A. Krawczyk, A. Kruckman, W. Kubiś, A. Panagiotopoulos, Examples of weak amalgamation classes, arXiv:1907.09577

~~~***~~~

Thank you for your attention!

The second se